Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 115790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431436

RESUMO

BACKGROUND: Although PD-1 blockade is effective for treating several types of cancer, the efficacy of this agent in glioblastoma is largely limited. To overcome non-responders and the immunosuppressive tumor microenvironment, combinational immunotherapeutic strategies with anti-PD-1 need to be considered. Here, we developed IL-12-secreting mesenchymal stem cells (MSC_IL-12) with glioblastoma tropism and evaluated the therapeutic effects of anti-PD-1, MSC_IL-12, and their combination against glioblastoma. METHODS: Therapeutic responses were evaluated using an immunocompetent mouse orthotopic model. Tumor-infiltrating lymphocytes (TILs) were analyzed using immunofluorescent imaging. Single-cell transcriptome was obtained from mouse brains after treatments. RESULTS: Anti-PD-1 and MSC_IL-12 showed complete tumor remission in 25.0% (4/16) and 23.1% (3/13) of glioblastoma-implanted mice, respectively, and their combination yielded synergistic antitumor efficacy indicated by 50.0% (6/12) of complete tumor remission. Analyses of TILs revealed that anti-PD-1 increased CD8+ T cells, while MSC_IL-12 led to infiltration of CD4+ T cells and NK cells. Both therapies reduced frequencies of Tregs. All these aspects observed in each monotherapy group were superimposed in the combination group. Notably, no tumor growth was observed upon rechallenge in cured mice, indicating long-term immunity against glioblastoma provoked by the therapies. Single-cell RNA-seq data confirmed these results and revealed that the combined treatment led to immune-favorable tumor microenvironment-CD4+, CD8+ T cells, effector memory T cells, and activated microglia were increased, whereas exhausted T cells, Tregs, and M2 polarized microglia were reduced. CONCLUSION: Anti-PD-1 and MSC_IL-12 monotherapies show long-term therapeutic responses, and their combination further enhances antitumor efficacy against glioblastoma via inducing immune-favorable tumor microenvironment.


Assuntos
Glioblastoma , Células-Tronco Mesenquimais , Animais , Camundongos , Glioblastoma/patologia , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Imunoterapia/métodos , Interleucina-12 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células-Tronco Mesenquimais/patologia , Microambiente Tumoral
2.
J Microbiol Biotechnol ; 34(2): 262-269, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213284

RESUMO

Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Panax , Extratos Vegetais , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Vácuo , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Panax/metabolismo , RNA Mensageiro , Óxido Nítrico/metabolismo
3.
Cancer Cell Int ; 24(1): 36, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238738

RESUMO

BACKGROUND: Although meningioma is the most common primary brain tumor, treatments rely on surgery and radiotherapy, and recurrent meningiomas have no standard therapeutic options due to a lack of clinically relevant research models. Current meningioma cell lines or organoids cannot reflect biological features of patient tumors since they undergo transformation along culture and consist of only tumor cells without microenvironment. We aim to establish patient-derived meningioma organoids (MNOs) preserving diverse cell types representative of the tumor microenvironment. METHODS: The biological features of MNOs were evaluated using WST, LDH, and collagen-based 3D invasion assays. Cellular identities in MNOs were confirmed by immunohistochemistry (IHC). Genetic alteration profiles of MNOs and their corresponding parental tumors were obtained by whole-exome sequencing. RESULTS: MNOs were established from four patients with meningioma (two grade 1 and two grade 2) at a 100% succession rate. Exclusion of enzymatic dissociation-reaggregation steps endowed MNOs with original histology and tumor microenvironment. In addition, we used a liquid media culture system instead of embedding samples into Matrigel, resulting in an easy-to-handle, cost-efficient, and time-saving system. MNOs maintained their functionality and morphology after long-term culture (> 9 wk) and repeated cryopreserving-recovery cycles. The similarities between MNOs and their corresponding parental tumors were confirmed by both IHC and whole-exome sequencing. As a representative application, we utilized MNOs in drug screening, and mifepristone, an antagonist of progesterone receptor, showed prominent antitumor efficacy with respect to viability, invasiveness, and protein expression. CONCLUSION: Taken together, our MNO model overcame limitations of previous meningioma models and showed superior resemblance to parental tumors. Thus, our model could facilitate translational research identifying and selecting drugs for meningioma in the era of precision medicine.

4.
Exp Dermatol ; 32(10): 1774-1784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37534569

RESUMO

The molecular mechanisms underlying melanoma metastasis remain poorly understood. In this study, we aimed to delineate the mechanisms underlying gene expression alterations during metastatic potential acquisition and characterize the metastatic subclones within primary cell lines. We performed single-cell RNA sequencing of a poorly metastatic melanoma cell line (WM239A) and its subclones with high metastatic potential to the lung (113/6-4L) and the brain (131/4-5B1 and 131/4-5B2). Unsupervised clustering of 8173 melanoma cells identified three distinct clusters according to cell type ('Primary', 'Lung' and 'Brain' clusters) with differential expression of MITF and AXL pathways and putative cancer and cell cycle drivers, with the lung cluster expressing intermediate but distinct gene profiles between primary and brain clusters. Principal component (PC) analysis revealed that PC2 (the second PC), which was positively associated with MITF expression and negatively with AXL pathways, primarily segregated cell types, in addition to PC1 of the cell cycle pathway. Pseudotime trajectory and RNA velocity analyses suggested the existence of cellular subsets with metastatic potential in the Primary cluster and an association between PC2 signature alteration and metastasis potential acquisition. Analysis of The Cancer Genome Atlas melanoma samples by clustering into PC2-high and -low clusters by quartiles of PC2 signature expression revealed that the PC2-high cluster was an independent significant factor for poor prognosis (p-value = 0.003) with distinct genomic and transcriptomic characteristics, compared to the PC2-low cluster. In conclusion, we identified signatures of melanoma metastasis with prognostic significance and putative pro-metastatic subclones within a primary cell line.

5.
Br J Cancer ; 129(7): 1061-1070, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558923

RESUMO

BACKGROUND: Glioblastoma (GBM), one of the most lethal tumors, exhibits a highly infiltrative phenotype. Here, we identified transcription factors (TFs) that collectively modulate invasion-related genes in GBM. METHODS: The invasiveness of tumorspheres (TSs) were quantified using collagen-based 3D invasion assays. TF activities were quantified by enrichment analysis using GBM transcriptome, and confirmed by cell-magnified analysis of proteome imaging. Invasion-associated TFs were knocked down using siRNA or shRNA, and TSs were orthotopically implanted into mice. RESULTS: After classifying 23 patient-derived GBM TSs into low- and high-invasion groups, we identified active TFs in each group-PCBP1 for low invasion, and STAT3 and SRF for high invasion. Knockdown of these TFs reversed the phenotype and invasion-associated-marker expression of GBM TSs. Notably, MRI revealed consistent patterns of invasiveness between TSs and the originating tumors, with an association between high invasiveness and poor prognosis. Compared to controls, mice implanted with STAT3- or SRF-downregulated GBM TSs showed reduced normal tissue infiltration and tumor growth, and prolonged survival, indicating a therapeutic response. CONCLUSIONS: Our integrative transcriptome analysis revealed three invasion-associated TFs in GBM. Based on the relationship among the transcriptional program, invasive phenotype, and prognosis, we suggest these TFs as potential targets for GBM therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Invasividade Neoplásica/patologia , Prognóstico , RNA Interferente Pequeno , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
6.
Life (Basel) ; 13(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511982

RESUMO

Although surgery followed by platinum-based therapy is effective as a standard treatment in the early stages of ovarian cancer, the majority of cases are diagnosed at advanced stages, leading to poor prognosis. Thus, the identification of novel therapeutic drugs is needed. In this study, we assessed the effectiveness of bepridil-a calcium channel blocker-in ovarian cancer cells using two cell lines: SKOV-3, and SKOV-3-13 (a highly metastatic clone of SKOV-3). Treatment of these cell lines with bepridil significantly reduced cell viability, migration, and invasion. Notably, SKOV-3-13 was more sensitive to bepridil than SKOV-3. The TGF-ß1-induced epithelial-mesenchymal transition (EMT)-like phenotype was reversed by treatment with bepridil in both cell lines. Consistently, expression levels of EMT-related markers, including vimentin, ß-catenin, and Snail, were also substantially decreased by the treatment with bepridil. An in vivo mouse xenograft model was used to confirm these findings. Tumor growth was significantly reduced by bepridil treatment in SKOV-3-13-inoculated mice, and immunohistochemistry showed consistently decreased expression of EMT-related markers. Our findings are the first to report anticancer effects of bepridil in ovarian cancer, and they suggest that bepridil holds significant promise as an effective therapeutic agent for targeting metastatic ovarian cancer.

7.
Genes Genomics ; 45(9): 1107-1115, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37405595

RESUMO

BACKGROUND: Although cytoreductive surgery followed by adjuvant chemotherapy is effective as a standard treatment for early-stage ovarian cancer, the majority of ovarian cancer cases are diagnosed at the advanced stages with dissemination to the peritoneal cavity, leading to a poor prognosis. Therefore, it is crucial to understand the cellular and molecular mechanisms underlying metastasis and identify novel therapeutic targets. OBJECTIVE: In this study, we aimed to elucidate the mechanisms underlying gene expression alterations during the acquisition of metastatic potential and characterize the metastatic subpopulations within ovarian cancer cells. METHODS: We conducted single-cell RNA sequencing of two human ovarian cancer cell lines: SKOV-3 and SKOV-3-13, a highly metastatic subclone of SKOV-3. Suppression of NFE2L1 expression was performed through siRNA-mediated knockdown and CRISPR-Cas9-mediated knockout. RESULTS: Clustering and pseudotime trajectory analysis revealed pro-metastatic subpopulation within these cells. Furthermore, gene set enrichment analysis and prognosis analysis indicated that NFE2L1 could be a key transcription factor in the acquisition of metastasis potential. Inhibition of NFE2L1 significantly reduced migration and viability of both cells. In addition, NFE2L1 knockout cells exhibited significantly reduced tumor growth in a mouse xenograft model, recapitulating in silico and in vitro results. CONCLUSION: The results presented in this study deepen our understanding of the molecular pathogenesis of ovarian cancer metastasis with the ultimate goal of developing treatments targeting pro-metastatic subclones prior to metastasis.


Assuntos
Neoplasias Ovarianas , Fatores de Transcrição , Humanos , Animais , Camundongos , Feminino , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Análise de Sequência de RNA , Fator 1 Relacionado a NF-E2/genética
8.
Yonsei Med J ; 64(3): 157-166, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36825341

RESUMO

PURPOSE: Glioblastoma (GBM) is one of the most lethal human tumors with a highly infiltrative phenotype. Our previous studies showed that GBM originates in the subventricular zone, and that tumor-derived mesenchymal stem-like cells (tMSLCs) promote the invasiveness of GBM tumorspheres (TSs). Here, we extend these studies in terms of ventricles using several types of GBM patient-derived cells. MATERIALS AND METHODS: The invasiveness of GBM TSs and ventricle spheres (VSs) were quantified via collagen-based 3D invasion assays. Gene expression profiles were obtained from microarray data. A mouse orthotopic xenograft model was used for in vivo experiments. RESULTS: After molecular and functional characterization of ventricle-derived mesenchymal stem-like cells (vMSLCs), we investigated the effects of these cells on the invasiveness of GBM TSs. We found that vMSLC-conditioned media (CM) significantly accelerated the invasiveness of GBM TSs and VSs, compared to the control and even tMSLC-CM. Transcriptome analyses revealed that vMSLC secreted significantly higher levels of several invasiveness-associated cytokines. Moreover, differentially expressed genes between vMSLCs and tMSLCs were enriched for migration, adhesion, and chemotaxis-related gene sets, providing a mechanistic basis for vMSLC-induced invasion of GBM TSs. In vivo experiments using a mouse orthotopic xenograft model confirmed vMSLC-induced increases in the invasiveness of GBM TSs. CONCLUSION: Although vMSLCs are non-tumorigenic, this study adds to our understanding of how GBM cells acquire infiltrative features by vMSLCs, which are present in the region where GBM genesis originates.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Invasividade Neoplásica/genética , Modelos Animais de Doenças , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
9.
J Cancer Res Clin Oncol ; 149(8): 4391-4402, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36107247

RESUMO

PURPOSE: Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS: PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS: Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS: Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.


Assuntos
Glioblastoma , Fotoquimioterapia , Humanos , Animais , Camundongos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Protoporfirinas/farmacologia , Protoporfirinas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
10.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497392

RESUMO

Phenotypic heterogeneity of glioblastomas is a leading determinant of therapeutic resistance and treatment failure. However, functional assessment of the heterogeneity of glioblastomas is lacking. We developed a self-assembly-based assessment system that predicts inter/intracellular heterogeneity and phenotype associations, such as cell proliferation, invasiveness, drug responses, and gene expression profiles. Under physical constraints for cellular interactions, mixed populations of glioblastoma cells are sorted to form a segregated architecture, depending on their preference for binding to cells of the same phenotype. Cells distributed at the periphery exhibit a reduced temozolomide (TMZ) response and are associated with poor patient survival, whereas cells in the core of the aggregates exhibit a significant response to TMZ. Our results suggest that the multicellular self-assembly pattern is indicative of the intertumoral and intra-patient heterogeneity of glioblastomas, and is predictive of the therapeutic response.

11.
Oncoimmunology ; 11(1): 2138152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338147

RESUMO

Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand-receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand-receptor interactions and provide a basis for using γδ T cells to treat glioblastoma. Vγ9Vδ2 T cells were generated from peripheral blood mononuclear cells of healthy donors using artificial antigen presenting cells. MICA, ULBP, PVR and Nectin-2 expression in 10 patient-derived glioblastoma (PDG) cells were analyzed. The in vitro cytokine secretion from the γδ T cells and their cytotoxicity toward the PDG cells were also analyzed. The in vivo anti-tumor effects were evaluated using a U87 orthotopic xenograft glioblastoma model. Expression of ligands and cytotoxicity of the γδ T cells varied among the PDG cells. IFN-γ and Granzyme B secretion levels were significantly higher when γδ Tcells were co-cultured with high-susceptible PDG cells than when they were co-cultured with low-susceptible PDG cells. Cytotoxicity correlated significantly with the expression levels of DNAM-1 ligands of the PDG cells. Blocking DNAM-1 resulted in a decrease in γδ T cell-mediated cytotoxicity and cytokine secretion. Intratumoral injection of γδ T cells showed anti-tumor effects in an orthotopic mouse model. Allogenic γδ T cells showed potent anti-tumor effects on glioblastoma in a DNAM-1 axis dependent manner. Our findings will facilitate the development of clinical strategies using γδ T cells for glioblastoma treatment.


Assuntos
Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/terapia , Receptores de Antígenos de Linfócitos T gama-delta , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Ligantes , Linfócitos T , Citocinas
12.
J Neurooncol ; 160(3): 677-689, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396930

RESUMO

PURPOSE: Limited treatment options are currently available for glioblastoma (GBM), an extremely lethal type of brain cancer. For a variety of tumor types, bioenergetic deprivation through inhibition of cancer-specific metabolic pathways has proven to be an effective therapeutic strategy. Here, we evaluated the therapeutic effects and underlying mechanisms of dual inhibition of carnitine palmitoyltransferase 1A (CPT1A) and glucose-6-phosphate dehydrogenase (G6PD) critical for fatty acid oxidation (FAO) and the pentose phosphate pathway (PPP), respectively, against GBM tumorspheres (TSs). METHODS: Therapeutic efficacy against GBM TSs was determined by assessing cell viability, neurosphere formation, and 3D invasion. Liquid chromatography-mass spectrometry (LC-MS) and RNA sequencing were employed for metabolite and gene expression profiling, respectively. Anticancer efficacy in vivo was examined using an orthotopic xenograft model. RESULTS: CPT1A and G6PD were highly expressed in GBM tumor tissues. Notably, siRNA-mediated knockdown of both genes led to reduced viability, ATP levels, and expression of genes associated with stemness and invasiveness. Similar results were obtained upon combined treatment with etomoxir and dehydroepiandrosterone (DHEA). Transcriptome analyses further confirmed these results. Data from LC-MS analysis showed that this treatment regimen induced a considerable reduction in the levels of metabolites associated with the TCA cycle and PPP. Additionally, the combination of etomoxir and DHEA inhibited tumor growth and extended survival in orthotopic xenograft model mice. CONCLUSION: Our collective findings support the utility of dual suppression of CPT1A and G6PD with selective inhibitors, etomoxir and DHEA, as an efficacious therapeutic approach for GBM.


Assuntos
Glioblastoma , Animais , Humanos , Camundongos , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Desidroepiandrosterona/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
13.
Cancer Cell Int ; 22(1): 309, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221088

RESUMO

INTRODUCTION: The importance of fatty acid oxidation (FAO) in the bioenergetics of glioblastoma (GBM) is being realized. Etomoxir (ETO), a carnitine palmitoyltransferase 1 (CPT1) inhibitor exerts cytotoxic effects in GBM, which involve interrupting the FAO pathway. We hypothesized that FAO inhibition could affect the outcomes of current standard temozolomide (TMZ) chemotherapy against GBM. METHODS: The FAO-related gene expression was compared between GBM and the tumor-free cortex. Using four different GBM tumorspheres (TSs), the effects of ETO and/or TMZ was analyzed on cell viability, tricarboxylate (TCA) cycle intermediates and adenosine triphosphate (ATP) production to assess metabolic changes. Alterations in tumor stemness, invasiveness, and associated transcriptional changes were also measured. Mouse orthotopic xenograft model was used to elucidate the combinatory effect of TMZ and ETO. RESULTS: GBM tissues exhibited overexpression of FAO-related genes, especially CPT1A, compared to the tumor-free cortex. The combined use of ETO and TMZ further inhibited TCA cycle and ATP production than single uses. This combination treatment showed superior suppression effects compared to treatment with individual agents on the viability, stemness, and invasiveness of GBM TSs, as well as better downregulation of FAO-related gene expression. The results of in vivo study showed prolonged survival outcomes in the combination treatment group. CONCLUSION: ETO, an FAO inhibitor, causes a lethal energy reduction in the GBM TSs. When used in combination with TMZ, ETO effectively reduces GBM cell stemness and invasiveness and further improves survival. These results suggest a potential novel treatment option for GBM.

14.
Biochem Biophys Res Commun ; 634: 108-113, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36242916

RESUMO

In this study, the levels of plasma estradiol-17ß (E2) in farmed Anguilla japonica were measured to determine their sex. The analyses were performed for two different size groups (large group, Total length (TL): 61-69 cm; small group, TL: 53-60 cm). The anatomical and histological observations showed that the large group consisted of 29% males and 71% females; the small group, 54% males and 45% females. The gonad histology showed that in the large group, 88% of the eels had immature gonads with ongoing sexual differentiation, 12% were mature with completed sexual differentiation. In the small group, 87% of the eels had immature gonads. The plasma E2 hormone levels were higher in the females of both sizes. In the large group, the average plasma E2 in females was 415 pg/ml, which was significantly higher than the average of 109 pg/ml in males (P < 0.05). In the small group, the average plasma E2 hormone level was 618 pg/ml, which was much higher than the average of 108 pg/ml in males. Quantitative real-time PCR showed that zygote arrest 1 (zar 1) and zona pellucida glycoprotein 3 (zp3) were more highly expressed in females than male. In the H-E staining, an eel in the oil droplet containing ovary stage had a high level of plasma E2 (1500 pg/ml), while an eel with testis in the spermatocyte stage had a low (60 pg/ml). E2 is a potentially useful tool and could play an important role in sex determination in broodstocks.


Assuntos
Anguilla , Animais , Feminino , Masculino , Estradiol , Gônadas , Ovário , Testículo
15.
Adv Healthc Mater ; 11(21): e2201586, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047642

RESUMO

Patient-specific cancer therapies can evolve by vitalizing the mother tissue-like cancer niche, cellular profile, genetic signature, and drug responsiveness. This evolution has enabled the elucidation of a key mechanism along with development of the mechanism-driven therapy. After surgical treatment, glioblastoma (GBM) patients require prompt therapy within 14 days in a patient-specific manner. Hence, this study approaches direct culture of GBM patient tissue (1 mm diameter) in a microchannel network chip. Cancer vasculature-mimetic perfusion can support the preservation of the mother tissue-like characteristic signatures and microenvironment. When temozolomide and radiation are administered within 1 day, the responsiveness of the tissue in the chip reflected the clinical outcomes, thereby overcoming the time-consuming process of cell and organoid culture. When the tissue chip culture is continued, the intact GBM signature gets lost, and the outward migration of stem cells from the tissue origin increases, indicating a leaving-home effect on the family dismantle. Nanovesicle production using GBM stem cells enables self-chasing of the cells that escape the temozolomide effect owing to quiescence. The anti-PTPRZ1 peptide display and temozolomide loading to nanovesicles awakes cancer stem cells from the quiescent stage to death. This study suggests a GBM clinic-driven avatar platform and mechanism-learned nanotherapy for translation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanomedicina , Humanos , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/terapia , Células-Tronco Neoplásicas , Temozolomida/farmacologia , Microambiente Tumoral
16.
Sci Rep ; 12(1): 13990, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978012

RESUMO

Forkhead Box M1 (FOXM1) is known to regulate cell proliferation, apoptosis and tumorigenesis. The lignan, (-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol (DFS), from Alnus japonica has shown anti-cancer effects against colon cancer cells by suppressing FOXM1. The present study hypothesized that DFS can have anti-cancer effects against glioblastoma (GBM) tumorspheres (TSs). Immunoprecipitation and luciferase reporter assays were performed to evaluate the ability of DFS to suppress nuclear translocation of ß-catenin through ß-catenin/FOXM1 binding. DFS-pretreated GBM TSs were evaluated to assess the ability of DFS to inhibit GBM TSs and their transcriptional profiles. The in vivo efficacy was examined in orthotopic xenograft models of GBM. Expression of FOXM1 was higher in GBM than in normal tissues. DFS-induced FOXM1 protein degradation blocked ß-catenin translocation into the nucleus and consequently suppressed downstream target genes of FOXM1 pathways. DFS inhibited cell viability and ATP levels, while increasing apoptosis, and it reduced tumorsphere formation and the invasiveness of GBM TSs. And DFS reduced the activities of transcription factors related to tumorigenesis, stemness, and invasiveness. DFS significantly inhibited tumor growth and prolonged the survival rate of mice in orthotopic xenograft models of GBM. It suggests that DFS inhibits the proliferation of GBM TSs by suppressing FOXM1. DFS may be a potential therapeutic agent to treat GBM.


Assuntos
Alnus , Glioblastoma , Lignanas , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Lignanas/farmacologia , Lignanas/uso terapêutico , Camundongos , beta Catenina/metabolismo
17.
Biochem Biophys Res Commun ; 613: 120-126, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550198

RESUMO

The mechanism of melanoma metastasis is poorly understood, especially at the single-cell level. To understand the evolution from primary melanoma to metastasis, we investigated single-cell transcriptome profiles of parental B16 melanoma cells (B16F0) and its highly metastatic subclone (B16F10). Genomic alterations between cells were also analyzed by whole-exome sequencing. We identified 274 differentially expressed genes (DEGs) in B16F10, including upregulated genes related to metastasis, Lgals3, Sparc, Met, and Tmsb4x, and downregulated Mitf pathway genes, Ptgds, Cyb5a, and Cd63. The proportion of cycling cells and cells highly expressing Kdm5b was significantly high in B16F10 cells. Among the five subclusters of B16 cells (C1-5), C3/C4 clusters comprised both B16F0 and B16F10 cells and exhibited intermediate DEG patterns, whereas the C5 cluster mostly comprised B16F10 and showed typical metastatic characteristics. In trajectory analysis, the C4 cluster in B16F0, which showed unique characteristics (mainly cycling cells and upregulation of Mitf pathway genes), have transition potential to the C5 cluster (B16F10). Regarding genomic alterations, stepwise evolution with shared mutations, including Braf, Pten, and Trp53, and further specific alterations led to metastatic development. Our results provide deeper understanding of melanoma metastasis at the single-cell level, thus aiding further studies in melanoma metastasis control.


Assuntos
Melanoma Experimental , Animais , Linhagem Celular , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Metástase Neoplásica , Análise de Sequência de RNA , Sequenciamento do Exoma
18.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566149

RESUMO

In this study, deep eutectic solvents (DESs) were synthesized using different ratios of choline chloride (CC) and dicarboxylic acids, and their eutectic temperatures were determined. The DES synthesized using CC and glutaric acid (GA), which showed a higher extraction efficiency than conventional solvents, was used for the extraction of flavonoid components from Pyrus ussuriensis leaves (PUL), and the extraction efficiency was evaluated using the response surface methodology. The flavonoid components rutin, hyperoside, and isoquercitrin were identified through high-performance liquid chromatography (HPLC), equipped with a Waters 2996 PDA detector, and HPLC mass spectrometry (LC-MS/MS) analyses. The optimum extraction was achieved at a temperature of 30 °C using DES in a concentration of 30.85 wt.% at a stirring speed of 1113 rpm and an extraction time of 1 h. The corresponding flavonoid content was 217.56 µg/mL. The results were verified by performing three reproducibility experiments, and a high significance, with a confidence range of 95%, was achieved. In addition, the PUL extracts exhibited appreciable antioxidant activity. The results showed that the extraction process using the DES based on CC and GA in a 1:1 molar ratio could effectively improve the yield of flavonoids from PUL.


Assuntos
Flavonoides , Pyrus , Cromatografia Líquida , Solventes Eutéticos Profundos , Flavonoides/química , Extratos Vegetais/química , Folhas de Planta/química , Reprodutibilidade dos Testes , Solventes/química , Espectrometria de Massas em Tandem
19.
Sci Rep ; 12(1): 3366, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233019

RESUMO

In this study, the chemical decomposition of a polyimide-film (i.e., a PI-film)-surface into a soft-film-surface containing negatively charged pyromellitic dianhydride (PMDA) and neutral 4,4'-oxydianiline (ODA) was successfully performed. The chemical decomposition was conducted by designing the slurry containing 350 nm colloidal silica abrasive and small molecules with amine functional groups (i.e., ethylenediamine: EDA) for chemical-mechanical planarization (CMP). This chemical decomposition was performed through two types of hydrolysis reactions, that is, a hydrolysis reaction between OH- ions or R-NH3+ (i.e., EDA with a positively charged amine groups) and oxygen atoms covalently bonded with pyromellitimide on the PI-film-surface. In particular, the degree of slurry adsorption of the PI-film-surface was determined by the EDA concentration in the slurry because of the presence of R-NH3+, that is, a higher EDA concentration resulted in a higher degree of slurry adsorption. In addition, during CMP, the chemical decomposition degree of the PI-film-surface was principally determined by the EDA concentration; that is, the degree of chemical composition was increased noticeably and linearly with the EDA concentration. Thus, the polishing-rate of the PI-film-surface increased notably with the EDA concentration in the CMP slurry.

20.
Enzyme Microb Technol ; 153: 109939, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798448

RESUMO

Rubusoside, which is used as a natural sweetener or a solubilizing agent for water-insoluble functional materials, is currently expensive to produce owing to the high cost of the membrane-based technologies needed for its extraction and purification from the sweet tea plant (Rubus suavissimus S. Lee). Therefore, this study was carried out to screen for lactic acid bacteria that possess enzymes capable of bio-transforming stevioside into rubusoside. Subsequently, one such rubusoside-producing enzyme was isolated from Lactobacillus plantarum GS100. Located on the bacterial cell surface, this enzyme was stable at pH 4.5-6.5 and 30-40 °C, and it produced rubusoside as a major product through its stevioside-hydrolyzing activity. Importantly, the enzyme showed higher ß-glucosidase activity toward the ß-linked glucosidic bond of stevioside than toward other ß-linked glucobioses. Under optimal conditions, 70 U/L of the rubusoside-producing enzyme could produce 69.03 mM rubusoside from 190 mM stevioside. The ß-glucosidase activity on the cell surface was high at 35 h of culture. This is the first report detailing the production of rubusoside from stevioside by an enzyme derived from a food-grade lactic acid bacterium. The application of this ß-glucosidase could greatly reduce the cost of rubusoside production, hence benefiting all industries that use this natural product.


Assuntos
Diterpenos do Tipo Caurano , Glucosídeos , Lactobacillus plantarum/enzimologia , beta-Glucosidase , Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Ácido Láctico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...